3,152 research outputs found

    Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost

    Get PDF
    The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg−1 and 362 mgCu kg−1) and Pb/Zn mine (4550 mgPb kg−1 and 908 mgZn kg−1) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element

    Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    Get PDF
    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota

    Managing urban socio-technical change? Comparing energy technology controversies in three European contexts

    Get PDF
    A {\em local graph partitioning algorithm} finds a set of vertices with small conductance (i.e. a sparse cut) by adaptively exploring part of a large graph GG, starting from a specified vertex. For the algorithm to be local, its complexity must be bounded in terms of the size of the set that it outputs, with at most a weak dependence on the number nn of vertices in GG. Previous local partitioning algorithms find sparse cuts using random walks and personalized PageRank. In this paper, we introduce a randomized local partitioning algorithm that finds a sparse cut by simulating the {\em volume-biased evolving set process}, which is a Markov chain on sets of vertices. We prove that for any set of vertices AA that has conductance at most ϕ\phi, for at least half of the starting vertices in AA our algorithm will output (with probability at least half), a set of conductance O(ϕ1/2log1/2n)O(\phi^{1/2} \log^{1/2} n). We prove that for a given run of the algorithm, the expected ratio between its computational complexity and the volume of the set that it outputs is O(ϕ1/2polylog(n))O(\phi^{-1/2} polylog(n)). In comparison, the best previous local partitioning algorithm, due to Andersen, Chung, and Lang, has the same approximation guarantee, but a larger ratio of O(ϕ1polylog(n))O(\phi^{-1} polylog(n)) between the complexity and output volume. Using our local partitioning algorithm as a subroutine, we construct a fast algorithm for finding balanced cuts. Given a fixed value of ϕ\phi, the resulting algorithm has complexity O((m+nϕ1/2)polylog(n))O((m+n\phi^{-1/2}) polylog(n)) and returns a cut with conductance O(ϕ1/2log1/2n)O(\phi^{1/2} \log^{1/2} n) and volume at least vϕ/2v_{\phi}/2, where vϕv_{\phi} is the largest volume of any set with conductance at most ϕ\phi.Comment: 20 pages, no figure

    Do earthworms impact metal mobility and availability in soil? A review

    Get PDF
    The importance of earthworms to ecosystem functioning has led to many studies on the impacts of metals on earthworms. Far less attention has been paid to the impact that earthworms have on soil metals both in terms of metal mobility and availability. In this review we consider which earthworms have been used in such studies, which soil components have been investigated, which types of soil have been used and what measures of mobility and availability applied. We proceed to review proposed reasons for effects: changes in microbial populations, pH, dissolved organic carbon and metal speciation. The balance of evidence suggests that earthworms increase metal mobility and availability but more studies are required to determine the precise mechanism for this. (C) 2009 Elsevier Ltd. All rights reserved

    Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability

    Get PDF
    The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg1 of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated
    corecore